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The reflection of shock waves over straight reflecting surfaces in steady flows was 
investigated numerically with the aid of the LCPFCT algorithm. The findings 
completely supported the experimental results which were reported in Part 1 of this 
paper (Chpoun et al. 1995). In addition, the dependence of the resulting shock wave 
configuration on the distance between the trailing edge of the reflecting wedge and the 
bottom surface, inside the dual-solution domain, was studied. As a result of this study, 
as well as the one reported in Part 1, the state of the art of shock wave reflections in 
steady flows was reconsidered. 

1. Introduction 
A detailed discussion of the two shock wave reflection configurations which are 

possible in steady flows, i.e. regular (RR) and Mach (MR) reflections, and the various 
possible transition criteria between them, are given in part 1 of the present study 
(Chpoun et al. 1995). 

In addition, the state of the art as it existed when our experimental (Part 1) and 
numerical (present) studies began are also summarized in Chpoun et al. (1995). 

The RR f-f M R  transition 
Following Li’s (1995) conclusions, an experimental study of the RR f-f M R  transition 
in steady flows was conducted by Chpoun et al. (1985) in the supersonic wind tunnel 
of Laboratoire d’ Aerothermique du CNRS, Meudon, France. Their experimental 
results verified Li’s (1995) conclusions. Both the analytical and experimental results 
indicated that there are regions in the dual-solution domain in which the regular 
reflection wave configuration is stable and that the RR + MR transition could occur 
anywhere in that domain, i.e. WN < wf‘(RR+ MR) < OF. 

Chpoun et al. (1995) also concluded that the wave configuration that is actually 
established in the dual-solution domain probably depends on geometrical parameters 
which arise from both the experimental facility used and the specific experimental set- 
up. The exact way by which the above-mentioned geometrical parameters affect the 
phenomenon is not yet clear. Some ideas can be found in Hornung, Oertel & 
Sandeman’s (1979) study of the R R  c, MR transition process in which the ‘lengthscale’ 
concept was put forward. This dependence on geometrical parameters, however, could 
explain why Hornung & Robinson (1982) and Henderson & Lozzi (1975, 1979) failed 
to observe stable RR wave configurations inside the dual-solution domain, while 
Chpoun et al. (1995) did observe stable R R  wave configurations there. 
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Since recent analytical (Li 1995) and experimental (Chpoun et al. 1995) studies 
indicated that, depending on geometrical conditions, both RR and MR wave 
configurations are stable in the dual-solution domain, it was decided to numerically 
investigate the reflection phenomenon in steady flows in order to shed more light on 
and deepen our understanding of how the geometrical parameters affect the reflection 
process inside the dual-solution domain. 

As will be shown subsequently, the numerical simulations revealed that both RR and 
MR are indeed stable in the dual-solution domain and that the specific type of 
reflection, i.e. RR or MR, indeed depends on the geometrical set-up of the numerical 
experiment. 

Prior to our introducing the present numerical study and results, it should be noted 
that Auld & Bird (1976) had already investigated this phenomenon. Their calculations 
were carried out at the molecular level using a direct simulation Monte Carlo method. 
Their numerical results ‘strongly indicated that regular reflection can occur in the 
range of deflection angles for which both regular and Mach reflection are possible’. 
Note that at the time of their study regular reflection wave configurations were 
considered to be unstable in that domain. 

2. The numerical study 
Details of the numerical study are given in the following. First, the governing 

equations of the problem under investigation are presented. Then, the numerical 
method for solving the governing equations, as well as additional data relevant to the 
numerical solution, are outlined. Finally, the geometrical set-up of the numerical 
simulation is discussed. Many more details regarding the numerical investigation can 
be found in Vuillon (1994). 

2.1. The governing equations 
The two-dimensional unsteady Euler equations which describe a non-dissipative flow 
over a wedge in Cartesian (x, y )  geometry are 

- a ( P 4  = --(puv)--(puu)---, a a ap 
at aY ax ax 

a a ap 
at aY ax aY 

a0 = --(puv)--(pvu)--, 

a a 
at aY ax 

-- a( P E )  - - - [ ( E  + P) v] - - [ ( E  + P) u], 

where u and u are the flow velocity components in the respective x- and y-directions, 
P and p are the local pressure and density and E is the total energy per unit mass. To 
close the system, the pressure and the total energy are related by 

D 

where y is the specific heat capacities ratio. The right-hand sides of the above equations 
are separated into two parts, the y-direction terms and the x-direction terms. This 
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arrangement in each of the four equations separates the y-derivatives and the x- 
derivatives in the divergence and gradient terms into parts which can be treated 
sequentially by a general one-dimensional solver. 

To use this split-step approach, one must ensure that the time step chosen is small 
enough to ensure that the distinct components of the fluxes do not change the cell 
average values appreciably during the time step. 

2.2. The numerical method 
The method used for the presented numerical simulation is the LCPFCT algorithm of 
Boris et al. (1993) which is a Flux-Corrected Transport (FCT) algorithm for solving 
generalized continuity equations. This algorithm is one of the latest one-dimensional 
flux corrected transport (FCT) algorithms with fourth-order phase accuracy and 
minimum residual diffusion. Moreover, one-dimensional continuity equation solvers 
such as LCPFCT can be used repetitively to construct a multi-dimensional program 
by time-step splitting in the different coordinate directions. The split method 
implemented here has been described previously and is very convenient in the present 
case. 

The boundary conditions on the different sides of the integration domain were as 
follows (see figure 1) : supersonic inflow conditions are imposed upstream; a relaxation 
to infinity values was implemented on both the downstream and the upper sides; the 
lower side was an axis of symmetry which in the case of an Eulerian approach was 
equivalent to a perfect wall; wall conditions were selected everywhere around the 
wedge. 

The reliability of the computer code developed was checked by simulating Hornung 
& Robinson’s (1982) experimental results. A comparison between the Mach stem 
height as predicted by the numerical simulation (open circles) and Hornung & 
Robinson’s (1982) measurements (closed circles) for the flow Mach numbers M ,  = 2.84 
and 3.98 is shown in figure 2. The solid lines are the predictions of Azevedo’s (1989) 
analytical model. Figure 2 clearly indicates that the numerical simulation is capable of 
excellently reproducing the experimental results. 

In addition to this comparison, the angles between the various discontinuities of the 
triple point were compared to those obtained analytically and/or experimentally by 
Chpoun et al. (1995). The agreement was again excellent. Based on these comparisons, 
it was concluded that the numerical code, which was developed in the course of this 
study, was capable of accurately simulating the investigated phenomenon. 

Grid and time-step considerations 
To implement the geometry of the problem, the Cartesian grid was chosen by fitting 

the wedge angle with the spatial steps in each direction (Ax = Ay/tanO,). Then 
sequential integration in each of the coordinate directions was performed without 
taking into account the internal points of the wedge. The result was that various 
geometries of the wedge could be studied by using only Cartesian grids. 

The LCPFCT algorithm is an explicit finite difference scheme and its time step is 
submitted to the CFL stability criterion. This criterion, for a given integration 
direction, depends on the flow field fluctuation in this particular direction and is 
expressed by 

AL. 
vi+ai 

At = m i n z z ,  (3) 

where AL, is the spatial step, v, and a, are the respective velocity and sound speed of 
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FIGURE 1. Schematic illustration of the numerical set-up. M,,  incident flow Mach number; Ow, 
reflecting wedge angle; w ,  length of the reflecting wedge surface; h, exit cross-sectional area; L, length 
of the reflecting wedge. 
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FIGURE 2.  Comparison between the Mach stem height as predicted by the numerical code developed 
here (open circles) and as observed experimentally by Hornung & Robinson (1982) (closed circles). 
For M ,  = 2.84 and 3.98 the error bars are indicated for each point. The solid lines were calculated 
by Azevedo (1989). h / L  = 0.37. 

the integration direction considered. Recall that vi is actually u in the x-direction and 
v in the y-direction, as given in equations (1) and (2). 

The grid spacing in the y-direction (vertical) was set to be constant and equal to 
Ay = 1 mm. In the x-direction (horizontal) the grid spacing was deduced for a given 
wedge having an angle of 8, from the relation Ax = Ay/tanO,. The computational 
domain was meshed by 80 points in the x-direction and by between 60 and 110 
points in the y-direction, depending on the value of the exit cross-sectional area, h (see 
figure 1). 

At t = 0 the flow quantities were initialized with the upstream flow conditions. The 
integration time step depended on the flow fluctuations and had an average value of 
0.6 ps. The steady-state Mach reflection wave configurations were obtained after about 
3000 iterations when the L,-norm residual had dropped by more than five orders of 
magnitude. The CPU time was about 8.3 x lop5 s/pt/iter. on an IBM 3090-VF 
computer. 

Consequently, the above-mentioned mesh sizes were chosen in order to get a steady 
solution in a reasonable CPU time. However, it had been verified, particularly through 
the wave angles at the triple point and the location of the Mach stem, that the solutions 
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obtained were identical to those obtained with a finer grid (for more details see Vuillon 
1994). 

2.3. The geometrical set-up 
The geometrical and numerical set-up in the present numerical simulation is shown 
schematically in figure 1. The oncoming flow Mach number is M,,, the reflecting wedge 
angle is Ow, the distance between the leading and trailing edges of the reflecting wedge 
is w and the distance from the trailing edge of the reflecting wedge to the line of 
symmetry is h. (Note that since the problem under consideration is two-dimensional, 
h could be regarded as the exit cross-sectional area.) 

Based on theoretical considerations the distance h is bounded by lower and upper 
limits. The lower limit on h, i.e. hmin, corresponds to the case in which the reflected 
shock wave, r of a stable Mach reflection, grazes the trailing edge of the reflecting 
wedge. This limiting situation is shown in figure 3 (a). Whenever the distance h reaches 
this value or is reduced below it, i.e. h 6 hmin, the Mach reflection becomes unstable and 
its Mach stem moves upstream until the Mach reflection vanishes and a bow shock 
wave is established ahead of the leading edge of the reflecting wedge. As a result, the 
flow through the two-dimensional converging nozzle, formed by the surface of the 
reflecting wedge and the line of symmetry, becomes subsonic. The two-dimensional 
converging nozzle which is formed by the wedge and bottom surfaces is said to be 
unstarted for this case. 

The value of hmgn can be calculated using geometrical relations from 

-sin 8, + I,, 1 sin $1 sin $2 

hmin = w (4) 

where 4, and $2 are the angles of incidence of the incident and reflected shock waves, 
respectively, w is the length of the reflecting surface, and 1, is the height of the Mach 
stem. The angle of incidence #; can be simply obtained from 

(M:  sin2 q51 - 1) cot $1 
tan8, = t(r+ 1) M i  -(ME sin2 - 1) ’ 

The angle of incidence $2 can be obtained by solving the governing equations of the 
Mach reflection, i.e. the three-shock theory (for details see Ben-Dor 1991, p. 13), and 
the Mach stem height, l,, can be obtained using Azevedo’s (1989) model (see also 
Azevedo & Liu 1993). 

The upper limit on h, i.e. h,,,, is determined by the point where the leading 
characteristic of the expansion fan, which is formed at the trailing edge of the reflecting 
wedge, intersects the incident shock wave, as shown in figure 3 (b). Using geometrical 
relations it can be simply shown that 

sin 8, sin (8, + pl) 
[sin,ul sin #Jsin ($1 - S,)] -sin (8, +pl) ’ hmax = w 

where the angle of incidence, $1, can be calculated from equation (5) .  The Mach angle, 
pl, is simply obtained from 

where the flow Mach number, MI, behind the incident shock wave is given by 
,ul = sin-l(l/Ml), (7) 

M i  sin2 $1 + (2 /y  - 1) 
((2yly- 1) M :  sin2 - 1) - e,) ’ 

A+- 

In ( 5 )  and (8) y is the ratio of the specific heat capacities, i.e. y = C,/C,. 
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o,, = 1 SO"-(#,  -ow+ 

FIGURE 3. Schematic illustration of the lower (a) and upper (b) limits on the exit cross-sectional area, 
h, i.e. hmt, and h,,,, respectively: i, incident wave; r, reflected wave; m, Mach stem shock waves; wtr, 
angle between i and r; lm, Mach stem length; $, angles of incidence; ,u, Mach angle. 

Based on the foregoing discussion, it can be concluded that for a given combination 
of flow Mach number, M,,, reflecting wedge angle, Ow, and reflecting wedge length, w, 
a reflection, either RR or MR, will occur provided the exit cross-sectional area at the 
trailing edge, h, is in the interval 

hmtn < h < hrnax. 

Prior to presenting our numerical results in the interval hmin < h < h,,,, it is of 
interest to illustrate the transient process which takes place when h < hrnin, i.e. a case, 
which as mentioned earlier, corresponds to a situation in which the two-dimensional 
converging nozzle formed by the reflecting wedge and the line of symmetry is said to 
be unstarted. 

The various colours in figures 4 and 6 correspond to various densities as shown in 
the colour scale given in figure 4(a). The reflecting wedge is shown in these figures in 
red. 

3. Results 
3.1. The wave evolution for h < hmts 

The transient process which takes place for M,  = 2.84, 8, = 26.56", w = 7 cm and 
h = 3.9 cm is shown in figures 4(&f ) .  Since hmin for these conditions as obtained 
from equation (4) is about 4 cm, this is clearly a case for which h < hmin. 

Figure 4(b) shows a non-stationary Mach reflection. The Mach stem propagates 
upstream as shown in the successive computational results in figure 4(c) where the 
reflected shock wave of the Mach reflection is seen to hit the trailing edge of the 
reflecting wedge. As a result, see figure 4(d ) ,  the reflected shock wave of the non- 
stationary Mach reflection reflects over the surface of the reflecting wedge as a 
secondary Mach reflection. Figure 4 (e) shows the wave configuration shortly before 
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FIGURE 4. (a) The density colour scale of the density plots shown in this figure and in figure 6. 
Numerical simulations (density contours) appropriate to the case h < hmln in which the process finally 
results in a bow shock wave ahead of the reflecting wedge. M,, = 2.84 and 8, = 26.56". (b, e)  Non- 
stationary MR wave configurations in which the Mach stem propagates upstream. Note how the 
reflected shock wave reflects over the surface of the reflecting wedge as a Mach reflection. ( f )  A 
stationary bow shock wave ahead of the reflecting wedge. The two-dimensional converging nozzle is 
unstarted for this case. 

the Mach stem of the secondary Mach reflection reaches the leading edge of the 
reflecting wedge. The stable bow shock wave which is finally established ahead of the 
unstarted two-dimensional converging nozzle is shown in figure 4( f ) .  Unlike the non- 
stationary Mach reflection shown in figures 4(&e), the bow shock wave shown in 
figure 4(f) is stationary. The subsonic flow behind it accelerates as it passes through 
the two-dimensional converging nozzle. 

3.2. The reflection conjigurations for  h,,, < h < h,,, 
Seven different cases were investigated numerically in this region. The upstream Mach 
number, M,,, and the reflecting wedge angle, Ow, are given in table 1. In addition, as 
indicated in figure 5, where the position of the seven cases in the (M,,o,)-plane is 
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FIGURE 5 .  Domains of different types of reflections in the (M0,  w,)-plane for y = 1.4. wg is the 
detachment condition, and wy the von Neumann condition. Numbered stars show the cases listed in 
table 1. 

Case Mo 
1 3.98 
2 4.96 
3 4.96 
4 6.00 
5 7.00 
6 2.84 
7 3.98 

8,. $1 = wt 

23.6" 36.8" 
26.56" 37.8" 
25.0" 35.5" 
26.56" 37.0" 
26.56" 35.5" 
26.56" 48.0" 
26.56" 41.25" 

TABLE 1. Upstream Mach number, reflecting wedge and incident wave angles of 
the investigated cases. For all the wedges M, = 7 cm. 

shown, cases 1-5 are located inside the dual-solution domain in which both RR and 
MR are theoretically possible and cases 6 and 7 are located in the domain in which only 
MR is possible. 

A few simulations with increasing values of h were conducted for each of these cases. 
Typical simulations for case 2 for which M,, = 4.96 and 8, = 26.56" are shown in 
figures 6(a-d). In figure 6(a) ,  in which h is slightly larger than hmin, a clear Mach 
reflection is observed. When h is increased, the triple point moves backwards 
(downstream) and the height of the Mach stem decreases (see figures 6 b  and 6c). 
Further increase of h finally results in a situation in which the Mach stem vanishes and 
the reflection becomes regular. Such a situation is shown in figure 6 ( d )  where a clear 
regular reflection is seen. Based on the numerical simulations the M R  ++ R R  transition 
occurred for this case at  h,, = 5.65 em. Note that for the conditions of case 2 equation 
(6) results in h,,, = 5.9 cm. 

A similar procedure was employed to numerically investigate cases 1, 3 ,4  and 5 (see 
table 1) which, as shown in figure 5, also lie inside the dual-solution domain. The 
numerically determined values of h at which the M R  c) R R  transition occurred, i.e. h,,, 
as well as the values of h,,, as calculated for each of these cases from equation (6) are 
given in table 2. 

As can be seen from table 2, h,, is smaller than h,,,. This is also shown in figure 7 
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FIGURE 6. Numerical simulations (density contours) appropriate to the case hmin < h < h,,, in which 
the MR- RR transition is shown to occur M ,  = 4.96 and 0, = 26.56'. (a-c) Successive stationary 
Mach reflections with increasing values of h. Note how the Mach stem which moves downstream 
becomes shorter. (d) A stationary regular reflection. The colour scale of the density plots is shown 
in figure 4(a). 

1 5.85 7.85 
2 5.65 5.90 
3 5 x 5  5.70 
4 4.85 5.15 

TABLE 2 .  The numerically determined values of h,, where the M R o  RR transition 
takes place. M,, 19, and w are given in table 1. 

5 4.65 5.10 

in which the seven simulations which have been conducted in case 1 of table 1 are 
superimposed. The solid line is the incident shock wave, the dashed-dotted line is the 
locus of the feet of the Mach stems of the Mach reflection wave configurations (for 
clarity the reflected shock waves and the slipstreams of the Mach reflection wave 
configurations are not drawn in figure 7). The point where the dashed-dotted line 
intersects the incident shock wave is the point where the RR- MR transition occurs. 
Although the dashed-dotted line seems to be straight, it is not. The numerical 
simulations clearly indicated that it is curved near the point where the R R  - M R  
transition is obtained. The dashed line in figure 7 is the head of the expansion fan which 
is formed at the trailing edge of the reflecting wedge. The point where the head of the 
expansion fan intersects the incident shock wave determines the value of h,,,. For 
values of h > h,,, the original incident shock wave ceases to exist since its strength 
decreases as a result of its continuous interaction with the entire expansion fan. 

Combining the information given in tables 1 and 2 indicates that h,, decreases as the 
incident flow Mach number increases, which is also shown in figure 8 in the (M,,h)- 
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FIGURE 7. Schematic illustration of the decrease in the Mach stem height as the transition from MR 
to RR is approached by increasing the exit cross-sectional area h, for the same initial gasdynamic ( M ,  
and $J conditions, M,, = 3.98, 0, = 23.6'. The numerically resulting wave configurations are MR as 
long as h < h,,, and RR when h > ht,. Note that h,,, > htr. 

A 0,= 26.56" 

0 ow= 23.60 Regular reflection 
A e,= 250 

Dual-solution domain 2l , tT",2.20, I I I ~ 

0 
1 2 3 4 5 6 7  

MO 

FIGURE 8. The dependence of h,, on M ,  inside the dual-solution domain as obtained numerically. 
Exact conditions for cases 1-5 are given in table 1. 

plane. Note that for cases 2, 4 and 5, Ow = 26.56' and hence these three simulations 
clearly indicate the dependence of h,, on M, for a fixed 8,. For the other two cases, 1 
and 3, 19, is somewhat smaller. 

From cases 3 and 5 for which wi is practically the same (see table l), a slight 
dependence of h,, on M, for a fixed wi is evident. When the above-mentioned numerical 
investigation procedure was conducted for cases 6 and 7 (see table 1) which, as shown 
in figure 5,  lie in the domain in which only Mach reflection is theoretically possible, the 
reflection was still a Mach reflection when h reached the value of h,,,, as shown for 
case 6 in figure 9. (Note that unlike figure 7, here the reflected shock waves are also 
drawn.). It is evident from figure 9 that if the loci of the feet of the Mach stems of the 
Mach reflection wave configurations are extrapolated to intersect the incident shock 
wave, the intersection point is at a value h > h,,,. However, since as mentioned earlier, 
at h > h,,, the incident shock wave undergoes a continuous decrease in its strength 
owing to its continuous interaction with the expansion fan, which emanates from the 
trailing edge of the reflecting wedge, it can no longer be regarded as the original 
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FIGURE 9. Schematic illustration of the decrease in the Mach stem height as the exit cross-sectional 
area, h, is increased, for M ,  = 2.84, Ow = 26.56'. Note that when h reaches h,,, the numerically 
resulting wave configuration is still an  MR. A transition to  R R  would have occurred near the point 
where the incident show wave is intersected by the locus of the feet of the Mach stems of the Mach 
reflections (dashed-dotted line) which is far below h,,,; however, at that location the incident shock 
wave is already weakened as a result of its continuous interaction with the expansion fan which is 
formed at the trailing edge of the reflecting wedge. 

incident shock wave. Thus, it is not surprising that for cases similar to 6 and 7 (see 
figure 5)  which lie in the domain in which only Mach reflection is possible, h = h,,, 
is reached when the reflection is still Mach reflection and a transition to regular 
reflection is impossible. 

3.3 .  Stability of the regular repection wave conJiguration 
The stability of the regular reflection wave configuration, which was established inside 
the dual-solution domain, was investigated by numerically introducing a pressure 
disturbance behind its reflection point. This was carried out in the following way. 
When a stationary regular reflection was established in the dual-solution domain, it 
was disturbed by introducing an overpressure and forcing the flow velocity to be equal 
to zero in the computational domain extending downstream of the reflection point for 
a height of 5 grid points. This way of introducing the overpressure disturbance was 
found to be sufficient to force the regular reflection to undergo a transition to become 
a Mach reflection. Following the formation of the Mach reflection the code was kept 
running for a wide number of iterations until the solution again became stationary. 
Using this procedure of introducing a disturbance it was found that: 

(i) regular reflection wave configurations which were formed in the range 
hmin < h < h,, were not stable and the finally observed reflection in this range was 
always a Mach reflection; 

(ii) regular reflection wave configurations which were formed in the range 
h,, -= f i  < h,,, were stable. The Mach reflection which was formed following the 
introduction of the disturbance eventually vanished and the finally observed stable 
reflection in this range was again regular reflection. 
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FIGURE 10. Illustration of the numerical evolution of the flow prior to and after the introduction of 
an overpressure disturbance in the dual-solution domain. Soon after the supersonic flow interacts 
with the reflecting wedge, the incident shock wave is formed (a). The incident shock wave, which is 
not yet straight, encounters the line of symmetry and the reflected shock wave is generated (b). A 
regular reflection is finally generated by the numerical code (c). A pressure disturbance is introduced 
behind the reflection point (d). The disturbance forces the RR to undergo a transition to MR (e). The 
MR stabilizes Cfand g) until it reaches its stationary configuration (h). 

Figure 10 shows the above-described procedure of disturbance introduction for 
M ,  = 4.96, 8, = 23" and hmzn < h < htr. Following the initiation of the flow, the 
regular reflection shown in (c) was established. The above-mentioned pressure and 
velocity disturbances were introduced numerically in (d). As a result, the regular 
reflection vanished and a Mach reflection (shown in e)  was formed. After the code 
completed a wide number of iterations, a stable Mach reflection wave configuration 
(g and h) was established. 
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4. Conclusions 
A numerical investigation of steady shock wave reflections in the dual-solution 

domain in which, based on the two- and three-shock theories, both regular and Mach 
reflection wave configurations are theoretically possible, revealed that in contrast to the 
accepted state of the art which was established by Hornung & Robinson (1982), regular 
reflection wave configurations are stable in this domain. The numerical finding 
supports an analytical study of Li (1995) who showed recently that, based on the 
principle of minimum entropy production, regular reflection wave configurations 
should be stable in most of the dual-solution domains. 

In addition, the numerical investigation illustrated how the resulting wave 
configuration depends on the geometrical set-up. It was shown that for the same initial 
gasdynamic conditions, i.e. incident flow Mach number, M,,, reflecting wedge angle, 8, 
(i.e. angle of incidence and reflecting wedge surface length, w, the resulting stable 
wave configuration can be either a Mach or a regular reflection depending upon 
whether the exit cross-sectional area, h, is smaller or larger than a critical cross- 
sectional area, h,,, at which the MR-RR transition occurred. In the range 
h,,, < h < h,, the stable wave configurations were Mach reflections and in the range 
h,, < h < h,,, the stable wave configurations were regular reflections. Regular 
reflection wave configurations, which were established in the range hmin < h < h,, were 
found to be unstable. Small numerical disturbances forced them to vanish and give rise 
to Mach reflection wave configurations. Our numerical attempts to establish Mach 
reflection wave configurations in the range h,, < h < h,,, failed. Unfortunately, 
because the reflection depends on many other geometrical parameters, we could not 
compare our findings quantitatively with experimental results. However, all the 
phenomena which were found to occur in our numerical simulations were observed 
experimentally by Chpoun et al. (1995). 

Finally, it was shown that in the domain where theoretically only Mach reflection 
wave configurations are possible, the numerically established wave configurations were 
indeed Mach reflections in the entire range hmin < h < h,,,. 
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